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Scope of the presented work

 Global-local analysis of composite flat or curved panels 
with stringers (→ kinematic coupling).

 The global FE mesh consists of shell elements.

 The local FE mesh has a high mesh density and consists 
of solid elements (many other possibilities exist, e.g. 
shell-to-shell).

solid region

Geometry and FE model
provided by CIRA in the

scope of the glFEM project
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Scope of the presented work

 The local region is - for the time being - located on the 
skin of the geometry.

 The local region is relatively large and is used for:

– Delamination due to damage by impact,

– In-ply damage onset and propagation.

 Therefore, stresses in the local region must be free from 
jumps and other artifacts.

 The execution time of the nonlinear analysis is 
dominated by the solid elements.
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Scope of the presented work

 Evaluation of the common-mesh refinement weighted-
residual method against a point-wise kinematic coupling 
method.

 Implementation and testing is done within the B2000++ 
FE code, http://www.smr.ch/b2000.

http://www.smr.ch/b2000
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Kinematic coupling

 Source region (1) and target region (2) are discretized 
as separate, non-matching FE meshes but with 
matching geometries:

 Error of the displacements on the interface:

 Formulate a set of nonlinear constraint equations (and 
derivatives thereof) to minimize the error (similar to 
rigid-body elements).

 Kinematic coupling methods are conservative but may 
induce stress jumps.
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Kinematic coupling

 Classes of coupling methods:

– Point-wise coupling methods (point-to-surface).

– Weighted-residual methods (L2-minimization, surface-to-
surface).

– Others such as FETI.

 Constraints for point-wise coupling on the interface:

 Constraints for L2-minimization:
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Constraint formulation and enforcement

 Constraints can be enforced using for instance:

– Quadratic penalty method,

– The Lagrange multiplier method,

– The augmented Lagrange multiplier method.

 The preferred choice depends on the sparse linear 
solver. We use the direct, multi-frontal MUMPS solver 
(http://graal.ens-lyon.fr/MUMPS) with pivoting 
together with Lagrange multipliers.

 To avoid singularities of the second variation:

– The constraints must be formulated such that their 
derivatives are nonzero everywhere.

– There must be no linear dependency between the constraints. 
This requires careful enumeration of the dependent 
degrees-of-freedom.

http://graal.ens-lyon.fr/MUMPS
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Common mesh refinement method

 A method to transfer fields from one surface mesh to 
another. Is also used for fluid-structure interaction.

 Is a weighted residual method. We choose the solid 
region (fine mesh) as the source region, and the shell 
region (coarse mesh) as the target region.

 Solves the problem of integrating over the interface.

 The matching shell and solid surface meshes are 
"merged" to a common mesh. Exact or nearly exact 
integration is performed using this common mesh.

1D example:
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Overview

Start out from a input file
containing shell and solid
elements which are not
connected.

Using the element geometries,
detect matching shell edges and
solid faces and create a set of
coupling regions.

For all coupling regions, create 
a common refined mesh.
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How to obtain the common mesh

 Preferred method:

– X. Jiao, M. Heath, Common-refinement-based data transfer 
between non-matching meshes in multiphysics simulations, 
Int. J. Numer. Meth. Engng 2004; 61:2402–2427

– Implemented in C++ in B2000++.

 Alternative method (prototype):

– Implemented in Python, using high-precision numerics 
(mpmath module).

– For each coupling region, create a parametric surface.

– Project the shell and solid surface meshes to this parametric 
surface.

– Peform a 2D constrained Delaunay triangulation on the 
parametric surface.

– Project the resulting triangles back to the shell and solid 
surface meshes.



ICCS16 conference, Porto,  June 29th, 201113

Implementation issues

 The meshing algorithm needs to be robust:

– Even for the simplest cases, numerical problems occur due to 
limited numerical precision.

– Points that are very close together produce triangles with 
very large angles. This may lead to an invalid mesh (e.g. 
inverted triangles or overlapping triangles).

– The largest part of the implementation and testing effort is 
concerned with achieving this robustness.

 Testing of the meshing algorithms was performed on a 
large number of test cases (automated procedure).
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Formulation of the constraints

 At the beginning:

– Determine the set of target shell d.o.f. which define the 
position of the shell surface. For each of these m d.o.f.'s, 
there will be a constraint.

– For each triangle, determine the integration order (depends 
on the shell and solid elements).

 For each integration point in each triangle:

– Evaluate displacement of the point on the solid surface (u1) 
and on shell surface (u2), their derivatives of u2, and the 
area (A) associated to the integration point.

– For each target shell d.o.f. ui (1 <= i <= m), add to the 
constraint qi the value of A * d_|u1-u2|/d_u2,i.
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Formulation of the constraints

 First and second variation:

– These constraints are evaluated for the first variation.

– The derivatives of the constraints w.r.t. all d.o.f.'s are needed 
for the second variation. This is a sparse (n x m) matrix, 
with n being the total number of d.o.f.'s.

 Evaluation of values and derivatives:

– Solid elements: Derivatives are constant (shape functions).  
The constraints are linear.

– Shell elements: Values depend on the rotation of the shell 
directors, hence, the constraints are nonlinear and the 
derivatives are non-constant.

– In B2000++, the constraints and derivatives thereof are 
evaluated by means of the solid and shell element 
implementations.
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Additional necessary constraints

 Numerical tests have shown that for certain geometries 
and material definitions, the common refined mesh L2-
method under-constrains the solid part of the interface.

 This may result in severe stress jumps near the 
interface.

 To amend this, we implemented additional point-wise 
contraints to ensure that the solid surface remains flat 
in the transverse direction. These constraints are 
independent of the shell region and the L2-minimization.

 This eliminates the observed stress jumps.
solid elements with
constraints (blue)

shell elements
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How to use

 In the input file, the user must specify the 
'add_field_transfer_coupling' directive.

 When this directive is present, the pre-processor 
automatically creates common meshes between 
matching shell and solid interfaces.
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Solid-to-shell coupling elements (SSC)

 A point-wise method. The shell region (coarse mesh) is 
the source region, the solid region (fine mesh) is the 
target region.

 The solid nodes are constrained to the shell surface.
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Solid-to-shell coupling elements

Features:

 'TF' elements (transverse-free). Eliminates artificial 
stress concentrations due to shell/solid formulation 
differences.

 Automatic insertion using the 'add_ssc_elements' 
directive, integrated in B2000++ pre-processor.

Remaining problems: Stress concentrations due to point-
wise coupling.
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Test case definition

Provided by CIRA
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Test case goals

 The shell-solid kinematic coupling should:

– Maintain load-displacement curve (conservative),

– Remain free of stress jumps inside the solid region (no 
overconstraining),

– Have little effect on the convergence of the Newton 
iterations.

 All this should be maintained even when the mesh 
density of the solid region is much higher than that of 
the shell region.

 We will evaluate:

– Load-displacement curves,

– Sxx and Szz though the centre and along the interface,

– Results of the L2-minimization method and the solid-to-shell 
coupling elements (SSC).



ICCS16 conference, Porto,  June 29th, 201124

Load-displacement curves and deformation

All methods 
reproduce the 
shell-only load-
displacement 
curve.
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Deformation along shell-solid interface

SSC elements

L2-minimization
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σ
xx

 through the centre
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σ
xx

  along the shell-to-solid interface
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σ
zz

  through the centre
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σ
zz

  along the shell-to-solid interface
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Test case results summary

 Both methods converge, but the convergence for the L2-
minimization method is better.

 Both methods accurately reproduce the load-
displacement curve.

 The L2-minimisation method produces a smooth stress 
distribution in the whole solid region.

 The solid-to-shell elements exhibit stress jumps near 
the interface; this is due to overconstraining.
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Thank you for your attention!
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