
An Informal Introduction to MemCom

Table of Contents
1 The MemCom Database..2

1.1 Physical Layout..2

1.2 Database Exchange...2

1.3 Adding More Data...2

1.4 The Logical Layout...2

1.5 Inspecting Databases with the MemCom Browser...3

1.6 Querying Data Sets..3

1.7 Iterating Through the Index..4

2 Working with Datasets...4

2.1 Saving an Array of Doubles as a Dataset..4

2.2 Loading an Array of Doubles From a Dataset..4

3 Descriptive Data...5

3.1 Annotating a Data Set with a Descriptor...5

3.2 Loading a Data Set Descriptor...5

4 Wrap Up – What You Can Do Now..6

5 What We Did Not Yet Talk About..6

This document gives you an impression of what you can do with MemCom from the point of
view of application programming. In the following examples we use the C programming
language; Similar examples could be made with Fortran and Python. Note that the complete
documentation of MemCom is available on-line. Have a loot at

• The MemCom Database: Explains how to make use of MemCom to save array data
to disk and to load array data from disk.

• We take a look how MemCom databases are physically and logically organized.
Once a database contains more than just a few datasets, you would like to query
dataset attributes and to obtain the list of datasets.

• Adding descriptive data is necessary to give data a meaning, that is, how to interpret
it. MemCom descriptors are a straightforward way to get self-descriptive data sets.

Version 7.3 of 16/02/13 Page 1

• A wrap up summarizes this short introduction.

• Some of the advanced features, which are not always needed, but might be useful.

1 The MemCom Database

1.1 Physical Layout

MemCom stores data under a specific directory in the current file system. Example: The
directory /tmp/toto.mc is a MemCom database. It contains the following files:

-rw-r--r-- 1 foo wheel 8000000 Dec 18 11:24 data.1
-rw-r--r-- 1 foo wheel 94 Dec 18 11:24 header
-rw-r--r-- 1 foo wheel 221184 Dec 18 11:24 index

The file data.1 contains the saved data, while the header and index files are used to
describe the contents of the database. Note that all data is saved in binary format, thus
making MemCom a faster and more space-efficient solution than text-files.

1.2 Database Exchange

MemCom databases may be exchanged between different hardware platforms without any
conversion; compressing a database before exchanging it can save time when copying the
database.

1.3 Adding More Data

When working with MemCom, you can add new data sets any time to an open database.
Suppose you have an array of integers

int array[12345]

then the call

mcDBputSet(handle, "new_data_set", "I", 12345, array);

creates a new data set. The data set name must be unique within the current MemCom
database, since data sets are identified by their names.

No matter how big this array is and no matter the number or the size of the previously
created data sets, there is no performance penalty when adding new data sets. This is very
important, because this way you can have hundreds of thousands of data sets in a single
database, the data set and database sizes only being limited by your hardware's and the
operating system's capabilities. This avoids the usual cluttering of directories with many files
that depend on each other.

1.4 The Logical Layout

Each data set is identified by its name. The data set names and attributes are stored in an
index. For efficiency reasons there is only a global index. Given the data set's name, the
data set attributes and data are looked up via the index. Hierarchical layouts can be
achieved by organizing dataset names with specific fields, separated by a separator, such
as the dot.

Version 7.3 of 16/02/13 Page 2

1.5 Inspecting Databases with the MemCom Browser

To display the contents of a MemCom database, launch the mcBrowser tool, which is
shipped with MemCom. The example below shows the directory of a database. i.e. the
browser main window (left), displaying the dataset names and set attributes in alphabetical
order. Clicking with the middle mouse button on a data set will display the contents of the
data set (right).

mcBrowser loads only the portion of data from the database which must be displayed,
allowing for instant display of portions of large datasets, typically hundreds of millions of
bytes.

1.6 Querying Data Sets

Often one needs to know if a data set exists from within a program. The function
mcDBinqSetAtt returns data set attributes if the set exists:

if mcDBinqSetAtt(handle, "my_set", NULL) == 1)
 print("data set exists.\n");

To obtain the dimensions and element type of a data set, the same call is used, but with the
third argument being a pointer to a mcDBinqSetAtt structure containing all data set
attributes. The following example shows how to print out the contents of a data set of type
double:

mcSetAttributes att;
double* data;
int i;

/* Inquire set and get set size */
mcDBinqSetAtt(handle, "my_set", & att);

/* Allocate memory */
data = malloc(sizeof(double) * att.size);

/* Read set from database */
mcDBgetSetArray(handle, "my_set", 0, data);

Version 7.3 of 16/02/13 Page 3

/ Print */
for (i = 0; i < att.size; i++)
 print("%f\n", data[i]);
free(data);

If we allocate the memory ourselves we can use the array version of the get function. It
does not allocate memory, but it takes the pointer to the allocated memory area as
additional argument.

1.7 Iterating Through the Index

To find out what data sets are stored in a MemCom database, the call to
mcDBgetSetNextIter is used to iterate through the table of contents. The example below
prints the names of all data sets:

mcSetAttributes att;
int i = 0; /* gets first data set */
while (mcDBgettNextIter(handle, &i, &att) == 1)
 printf("%s\n", att.name);

2 Working with Datasets

2.1 Saving an Array of Doubles as a Dataset

Suppose you have allocated the following array of double-precision floating-point numbers

double data[size];

which, after some calculations, contains now data that you would like to save to disk:

int handle;
char fname = "/path/to/the/memcom-db;
handle = mcDBopenFile>(fname, "rw");
mcDBputSet(handle, "my_name", "F", size, data);
mcDBcloseFile(handle);

We open the MemCom database in read and write mode. In this case, MemCom
automatically creates a new database if the database does not yet exist. "F" indicates the
data type (referring to the C data type double). size is then number of elements of the
array.

2.2 Loading an Array of Doubles From a Dataset

At a later stage in the current program or in a different program, you might want to retrieve
the saved data:

int handle;
double* data;
char fname = "/path/to/the/memcom-db;
handle = mcDBopenFile(fname, "r");
data = mcDBgetSet(handle, "my_name", 0);
mcDBcloseFile(handle);

The array data now contains the data that were previously saved. In this case, the
memory needed to hold the data is allocated by MemCom during the call to mcDBgetSet.

Version 7.3 of 16/02/13 Page 4

The size argument 0 tells MemCom to load the whole array. When the array data is no
longer needed, its memory can be freed:

mcDBfree(data);

In these examples we always opened and closed the MemCom database. If you perform
more than a single MemCom operation in a program, you should leave the database open
and work with the same database handle. Subsequently, we just assume that handle
designates a MemCom database opened for reading and writing.

3 Descriptive Data

So far we have worked with so-called positional data sets, that is, array tables of basic data
types. Now we introduce MemCom's concept of relational tables, also referred to as
dictionaries.

3.1 Annotating a Data Set with a Descriptor

Frequently, descriptive data need to be stored together with data sets. Since this data is
generally only small, it is grouped together in descriptors. Each data set can have a
descriptor, which is a dictionary (or a set of key-value pairs).

/* Create a table object */
mcRTable* rt;

 /* Create an empty relational table object in main memory */
rt = mcTBcreateDesc();

/* Insert the key-value pair "UNIT"="mm" in the relational
table. The key is always a string, while the value may be of
type string or a numerical.*/
mcTBinsK("UNIT", "mm", rt);

/* Store the relational table as descriptor of the data set */
mcTBstoreDesc(handle, "my_set", rt);

/* Free the relational table object */
mcTBfree(rt);

Note that only the mcTBstoreDesc function operates on the database, all other functions
operate in main memory, thus avoiding latency problems: It is generally not desirable to
access the database (that is, the file system, and eventually the disk) with very small
portions of data. The mcTBins functions manipulate the data in main memory, while
mcTBstoreDesc copies the whole relational table to disk, minimizing performance losses
due to I/O latencies. Finally, mcTBfree releases the table object in memory, freeing the
occupied space.

3.2 Loading a Data Set Descriptor

The following example loads a data set descriptor and prints the key, type, and size of all
items:

mcRTable* rt;
if ((rt = mcTBloadDesc(handle, "my_set")) != NULL) {

Version 7.3 of 16/02/13 Page 5

 /* descriptor exists, print contents */
 char name[64];
 char type[4];
 int size;
 int i = 0; /* gets first key */
 while (mcTBnextObjIter(i, name, type, &size;, rt))
 print("name=%s type=%s size=%d\n", name, type, size);
}

4 Wrap Up – What You Can Do Now

By making use of the MemCom calls described earlier, you should now already be able to
use MemCom for

• Opening and closing MemCom databases

• Saving an array to a data set

• Loading a data set into an array

• Adding more datasets to a database

• Inquiring data set attributes

• Iterating through the list of data sets in a database

• Exchanging MemCom databases with others working on different platforms

• Browsing databases with the MemCom browser

• Adding descriptive data to data sets

• Reading data set descriptors

5 What We Did Not Yet Talk About

Of course, this introduction covers only some - although important- aspects of MemCom.
Among the many other features of MemCom we can mention

• Customized error handling: MemCom error messages are descriptive and help you
to point out the problem that caused the error. The mcErrTermLevel and
mcErrSetOutput functions permit customisation of MemCom's error handling.

• Read and write only parts of a data set: Sometimes only a part of a large data set
needs to be read or written, see the mcDBgetSetpos and mcDBputSetpos
functions.

• Multi-dimensional data sets: Matrices are the most frequent case of two-dimensional
data structures. The mcDBgetSubset and mcDBputSubset calls permit I/O on the
sub-set level. MemCom supports up to five dimensions. The mcDBgetSetslice
and mcDBputSetslice functions implement the concept of slices for MemCom
datasets.

• Relational table data sets: Descriptive data can be stored in the dataset itself. See
the mcTBload and mcTBstore functions.

• Minimizing I/O latency: When doing I/O on very small datasets or small portions of

Version 7.3 of 16/02/13 Page 6

datasets, the operating system's overhead becomes a bottle-neck. MemCom's
paging mode, initialited by the function mcDBopenFileBuffered, implements an
efficient cache mechanism, a feature not present in other data managers. In paging
mode, the system I/O is minimized.

•

• Remote access: The client/server mode permits access to remote MemCom
databases over a TCP/IP network. Whether a database is accessed locally or
remotely, is transparent to the application. The mcDBopenFile function allows for
opening a database in stand-alone or client mode.

• Concurrent access: A simple but efficient transaction mechanism for the
client/server mode helps to maintain database integrity when multiple clients access
a database concurrently. See mcBegin and mcEnd.

Version 7.3 of 16/02/13 Page 7

	1 The MemCom Database
	1.1 Physical Layout
	1.2 Database Exchange
	1.3 Adding More Data
	1.4 The Logical Layout
	1.5 Inspecting Databases with the MemCom Browser
	1.6 Querying Data Sets
	1.7 Iterating Through the Index

	2 Working with Datasets
	2.1 Saving an Array of Doubles as a Dataset
	2.2 Loading an Array of Doubles From a Dataset

	3 Descriptive Data
	3.1 Annotating a Data Set with a Descriptor
	3.2 Loading a Data Set Descriptor

	4 Wrap Up – What You Can Do Now
	5 What We Did Not Yet Talk About

